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ABSTRACT
Object recognition from remote sensing systems is a task of
immense interest. With the vast deployment of aerial vehi-
cles and space borne sensors for a wide variety of purposes,
it is critical to have robust image processing techniques to an-
alyze massive streams of collected data. Herein, we explore
the utility of a feature descriptor learning framework, called
improved Evolution-COnstructed (iECO) features. Addition-
ally, an investigation into the combination of iECO features
with soft features is conducted. Soft features are a determin-
istic approach to highlighting pertinent information for im-
proving the quality of features extracted specific to the object
of interest while iECO is a way to learn from data the rele-
vant information. Experiments are conducted using four-fold
(scene based) cross-validation and are reported in terms of
target recognition rates and false alarm rates. Results indi-
cate that iECO features are individually best overall and the
combination of iECO and soft features can lead to improved
results.

Index Terms— iECO, feature learning, soft features, ob-
ject recognition

1. INTRODUCTION

As the popularity and deployment of remote sensing systems
continues to rise, so does the demand for signal and image
processing of single-, multi-, and hyper-spectral big data. Ap-
plications of remote sensing range from military and home-
land defense, e.g., person, car, tank or airplane detection and
tracking, to earth observations like the identification and mon-
itoring of crops, vegetation, and deforestation. While appli-
cations vary, most demand the robust detection or recognition
of anthropogenic or natural phenomena. Rather than develop
overly specific algorithms for each application or object, we
instead seek new flexible and generalized processing frame-
works that can be tailored to different needs. In this article,
we explore the individual and combined benefits of a recently
established feature descriptor learning framework called im-
proved Evolution-COnstructed iECO [1], initially explored
in the context of explosive hazard detection for humanitarian
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Fig. 1. Flow diagram of the proposed work. The goal is to
investigate the individual and combined performance of iECO
and soft features in remotely sensed data.

mine clearance, and a multi-scale importance map weighted
approach for soft feature extraction [2]. The prior approach is
ideal for learning signal features while the latter is of benefit
for soft object detection and the extraction of features in rich
foreground (target) regions. The objective is to combine these
two methods in order to learn signal features in target/object
rich regions of interest (ROI). Figure 1 is a flow diagram high-
lighting the proposed methods (expanded on in Section 2).

In order to demonstrate the benefit and performance of the
proposed methodology, we study the application of automatic
aerial vehicle recognition in satellite imagery. Our image
database consists of panchromatic high-resolution orthorec-
tified, georeferenced commercial satellite imagery from Dig-
italGlobe’s Quickbird sensor. This database consists of nu-
merous objects from four scenes representing different cap-
ture times of a single region within the four scenes, Kabul In-
ternational Airport. Figure 2 shows example target imagery.
The remainder of this article is organized as follows. In Sec-
tion 2 we discuss methods and new work, and in Section 3 we
discuss findings.

2. METHODS

Before we explain iECO, importance maps, and how they are
combined, the general architecture of our approach is out-
lined. First, this work is one of sliding window-based ob-
ject recognition. Feature extraction, relative to a single chip,



Fig. 2. Example objects from our image database, which
shows the variations within and across object classes and
complicated context. From top left, moving right: two com-
mercial jets instances, two helicopter instances, and two mil-
itary/cargo instances.

called ROI hereafter, is performed across multiple spatial res-
olution scales under a pyramid scheme. In this work, we
used 0.5×0.5 m ground sample distance (GSD) images, as
well as downsampled resolutions of 1×1 m and 2×2 m GSD.
Furthermore, a 5×5 partially overlapping cell-structured ap-
proach is implemented at each scale. This processing tech-
nique is important as it helps preserve the local spatial rela-
tions of features in an image ROI. Features from cells and
scales are ultimately concatenated into a unified vector, and
support vector machine (SVM) classification is used. Next,
we discuss the iECO framework.

As detailed in [1], the iECO feature descriptor framework,
referred to hereafter as simply iECO, improves the ECO work
of Lillywhite et al. [3] in two major overarching ways; replac-
ing unrolled image “features” with feature descriptors and
more efficient and effective learning. The goal of iECO is to
learn a composition of image transforms using some learner,
herein a genetic algorithm (GA), such that some defined im-
age space feature descriptor can best extract discriminative
information. That is, iECO provides an autonomous mech-
anism to potentially enhance any given feature descriptor’s
performance. The image transforms that are available to the
GA for learning such a composition are defined by the user.
For the sake of article compactness, the full set of image
transforms (20 in total) available to the GA have been omit-
ted (they can be found in [1]). iECO has a major advan-
tage over related feature learning works such as convolutional
neural networks (CNNs) in the respect that it includes a set
of heterogeneous image transformations, but is not a black
box, i.e., each feature composition (individual’s chromosome)
can be “opened up” and studied. Individuals comprising the
GA’s population are allowed to have chromosomes of varying
length. However, the maximum length has been limited to
eight genes, as in both our previous work [1] and Lillywhite’s

original ECO work [3]. While limiting chromosome length
is not required, it is most often done to reduce computation
(run-time and learning) time. A chromosome is the segment
of genes, i.e., series of image transforms (of which ordering
matters), that represents a potential solution to the optimiza-
tion task.

A key aspect of the iECO framework is that it is fea-
ture descriptor dependent. That is, if using multiple feature
descriptors, iECO must be employed for each descriptor
independently. In [1], it was shown that a descriptor’s per-
formance is degraded, sometimes dramatically, when inter-
changed with other descriptors’ learned iECO pipeline. Thus,
for each feature descriptor used, a unique iECO pipeline is
learned. Herein, four feature descriptors are implemented;
the (1) histogram of oriented gradients (HOG)[4], (2) lo-
cal binary pattern (LBP)[5], (3) edge histogram descriptor
(EHD)[6], and (4) statistical descriptor (SD)[1]. We note that
local skewness and the difference between (each) local and
global skewness has been added to the SD.

A common shortcoming of GAs is their lack of popu-
lation diversity. The diversity promoting constraints intro-
duced in [1] address this issue and ensure a more thorough
search of the solution space. Let Θ = [θ1, θ2, ..., θn] denote
n constraints, where n is the maximum allowed chromosome
length. The value at θi defines the maximum percentage of
gene overlap at the ith gene of the chromosome allowed for
all individuals in the population whose genes 1 through i− 1
overlap as well (i.e., are the same). Thus, through the defining
of Θ, great control and assurance over the amount of diversity
present in an evolutionary algorithm’s population is obtained.

In [2], importance maps for per-pixel weighting are de-
rived from differential morphological profiles (DMPs). The
DMP can exploit contrast edges between objects and their
surrounding context to extract said objects. Using geodesic
morphological reconstruction, the DMP extracts objects that
are lighter (opening) and darker (closing) than their surround-
ing context. First, we apply a median filter for denoising
and edge preservation. The DMP produces a set of scale-
attributed responses using a geodesic disk of size rm, where
m ∈ M defines the scales of a morphological structuring el-
ement. Herein, geodesic disks of radii 1, 3, 5, 7, 9, and 11
m are used. By computing the piece-wise differential, i.e., re-
sponse at scale rm minus rm−1, we find objects that survive
up to some scale of SE, then are obliterated in a subsequent
scale. Thus, levels in the DMP are the set of objects extracted
during a particular geodesic scale transition. After comput-
ing the DMP, it is fused into a soft segmentation (per pixel
confidence) of objects in a ROI based on the Choquet integral
(CI). Finally, the soft segmentation (called a importance map
hereafter) is obtained by processing the fused DMP image
with morphological 3 m radial dilation and object reconstruc-
tion, which further enhances the soft segmentation and iso-
lates the object of interest. We then compute the eigenvalues
and eigenvectors of the soft segmentation in order to perform



Fig. 3. Example of input image, an iECO output, and its cor-
responding importance map. The dashed lines provide a vi-
sual illustration of the partial overlap across cells.

a rotational alignment of the original image and the impor-
tance map. Due to ambiguity in the direction of the major
eigenvector, we perform both possible rotations and use both
in training. For further details on importance map generation,
refer to [2]. Per-pixel features, such as the HOG, LBP, Haar-
like features (HLF), and the invariant object moments (IOM),
make use of the importance map by using it when calculating
a histogram of these features. Instead of adding these features
to a histogram as they have always been added, one simply
multiplies their corresponding [0, 1] importance map value by
the amount that would otherwise be added to the descriptor.

This article is interested in studying the applicability of
iECO for remotely sensed imagery. However, we are also
interested in the exploration of using the iECO framework
in conjunction with soft features. To some extent, these two
methods are pursuing similar end-goals. That is, soft features
are employed to extract an object of interest’s defining charac-
teristics and to “ignore” background, i.e., non-target informa-
tion. Similarly, the iECO framework seeks to find an optimal
composition of image transforms such that a given feature de-
scriptor can best extract information for discriminating target
from non-target. Therefore, it is advantageous to explore the
combination of these two theories in order to learn what fea-
tures are best in a context independent fashion. It is relatively
simple to combine these two techniques. As we calculate the
histogram features for iECO, we simply use the correspond-
ing [0, 1] importance map weight in the update rule (multipli-
cation of the standard update by the importance map weight).

In total, there are four approaches to object recognition
in satellite imagery investigated; raw, soft (importance map
weighted) features, iECO, and the combination of soft fea-
tures with iECO. For illustrative purposes, Figure 3 shows an
example chip from our database, a corresponding iECO fea-
ture, and the derived importance map.

3. EXPERIMENTAL FINDINGS

Experiments are performed based on four-fold (scene-based)
cross-validation (CV). That is, for each of the four scenes,
one is designated as the testing scene and the remaining three

scenes are used for training. Furthermore, each scene corre-
sponds to a data collection from different times of the year.
The data consists of three classes of target objects: commer-
cial jets, helicopters and military cargo. Depending on the
scene, the number of target objects for each class varies. In
addition, there are (pseudo)random image chips in which no
target class instance is present. A one versus all classification
approach is employed. Results are presented using a target
recognition rate (TAR) and false alarm rate (FAR) based ta-
ble summary of our findings.

To begin, we report and discuss the results under the most
optimistic scenario: re-substitution. Herein, numerous ker-
nels and parameters were tried; however, the polynomial ker-
nel with degree 3 was chosen due to it having the best perfor-
mance for this data set and re-substitution experiments. For
compactness, the average TARs and FARs for each method
across all scenes and objects is reported in Table 1.

Table 1. Averaged TARs and FARs for re-substitution.

TAR FAR

Raw 0.984 0.000
Soft 0.769 0.000
iECO 1.000 0.000
iECO+Soft 0.844 0.001

From Table 1, we see that iECO performs the best, achiev-
ing perfect classification for our data. Comparatively, raw
features performs very well with a slight reduction in TAR,
but no decrease in FAR, and soft features has a surprisingly
large drop in TAR (again, no drop in FAR). The effects of soft
features is seen in the performance of iECO+soft as TAR is
reduced (or, conversely, we see iECO brings the performance
of soft features up). However, due to the drop in TAR perfor-
mance between iECO+soft and iECO individually, we realize
that soft features (i.e., the importance map) has the possibil-
ity to degrade/hinder the information that iECO has learned
to queue on. At the same time, iECO has the ability to gather
such discriminative information that it is able to still improve
the performance of soft features (used by themselves) even
with its information being, at times, degraded by the impor-
tance map. This indicates that iECO features are very power-
ful and robust.

Next, an analysis of the four-fold CV results is provided.
For these experiments, a number of different kernels were ex-
plored (e.g., radial basis function (RBF), polynomial, etc.)
and it was found that a linear support vector machine (SVM)
performed the best for this data. Overall, the combination of
iECO and soft feature extraction performed the best. Again,
for compactness, we only report the average TARs and FARs
for each method across all scenes and objects, and this is
given in Table 2.

From the initial results presented in Table 2, we see that
the combination of iECO and soft features results in the



Table 2. Averaged TARs and FARs for four-fold CV.

TAR FAR

Raw 0.815 0.045
Soft 0.590 0.018
iECO 0.802 0.019
iECO+Soft 0.893 0.035

best TAR performance, although it comes at the expense of
a (slightly) higher FAR than both soft features and iECO
individually. One possible reason for iECO+soft features’
increased FAR is iECO could be cueing on information that,
at times, gets diminished by the importance map. However, to
put the TARs and FARs into some perspective, we are talking
a difference in an average of 1.5 more false alarms versus an
average of 9 additional positive detections (in reference to
iECO + soft and iECO individually). In all three cases, soft,
iECO, and iECO+soft, the FAR is less than raw features. In-
terestingly, focusing on just TAR performance, soft features
perform the worst, which supports the re-substitution results
(Table 1). The exact reason(s) for such inferior performance
by soft features is subject for further research. However, we
do want to mention some of our initial thoughts on the per-
formance of soft features in this work. Soft features are not
a simple straight-forward technique. They require a number
of pre-processing steps and parameters for operation, all of
which impact the final importance map that is produced and
used for feature weighting. Additionally, we may need to
reassess our approach to deriving the final fused DMP image
(which is our importance map). We have a number of DMPs
that are primed to extract objects at different scales, i.e., one
DMP is better for detecting small objects (e.g., helicopter
blades), while another is better at detecting large objects
(e.g., fuselage on a commercial jet). Rather than fusing these
to generate a final importance map, it may be of more benefit
to keep these separate, and design a classifier for each object
type in which each object’s classifier output is fused to arrive
at a final decision. Finally, iECO alone performs well. While
iECO does not have as high TAR as raw features, iECO ex-
hibits a better FAR (false alarms are reduced by more than
half).

4. CONCLUSION

In conclusion, we found that iECO is able to learn very robust
and discriminative features. Additionally, results reported in
Table 2 indicate that there is indeed potential in the combi-
nation of iECO and soft features; however, this needs further
research to better understand the complicated nature of these
two methods being intertwined. For example, from the re-
substitution experiments, soft features hurt the performance
of iECO when combined, yet improved iECO’s performance
on the four-fold CV experiments. One possible conclusion

could be that combining iECO and soft features results in a
more generalized framework, but with the expectation that
iECO could be hindered by the importance map at times while
iECO very reliably improves the performance of soft features
alone. This of course requires a much more thorough inves-
tigation into the combining of these two techniques before
any such conclusions could be made. Furthermore, the per-
formance of soft features is surprising. It is still our belief
that soft features are a valuable technique, but its parameters
and fusion may need to be revisited. Meaning, were the im-
portance maps derived properly? It is plausible that differ-
ent morphological operators and/or parameter selection could
drastically improve the quality of importance maps generated.
Future work will consist of further exploring how to better
combine these two techniques and improving the fusion of
the information across the iECO population.
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