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ABSTRACT
Herein, we explore both a new supervised and unsupervised
technique for dimensionality reduction or multispectral sen-
sor design via band group selection in hyperspectral imag-
ing. Specifically, we investigate two algorithms, one based on
the improved visual assessment of clustering tendency (iVAT)
and the other based on the automatic extraction of “block-
like” structure in a dissimilarity matrix (CLODD algorithm).
In particular, the iVAT algorithm allows for identification of
non-contiguous band groups. Experiments are conducted on
a benchmark data set and results are compared to existing al-
gorithms based on hierarchical and c-means clustering. Our
results demonstrate the effectiveness of the proposed method.

Index Terms— band grouping, dimensionality reduction,
hyperspectral, iVAT, CLODD

1. INTRODUCTION

Hyperspectral imaging is a demonstrated technology for nu-
merous earth and space-borne applications involving tasks
such as target detection, invasive species monitoring and pre-
cision agriculture. However, hyperspectral imaging suffers
from the “curse of dimensionality”. Of particular interest
is new theory for dimensionality reduction or identification
of fewer spectral bands for multispectral versus hyperspec-
tral imaging, typically relative to some specific task, which
aids efficient computation, improves classification and lowers
system cost. Most techniques can be divided into two broad
categories—projection or clustering. Projection techniques
require all bands initially (versus feature selection) and they
are focused on reducing dimensionality. Approaches include
principal component analysis (PCA), Fishers linear discrim-
inant analysis (FLDA) and generalized discriminant analysis
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(GDA), random projections (RP), and kernel extensions.
Some methods are unsupervised, e.g., PCA and RP, while
others are supervised, e.g., FLDA and GDA. Clustering is
unsupervised learning and it can be applied to hyperspectral
imagery in a number of ways. While it does not automatically
do dimensionality reduction, it helps to identify structure and
one can take that information and use it for dimensionality re-
duction or band group selection. For example, in [1] Martinez
et al. used an information measure to compute dissimilarity
between bands and they used hierarchical clustering with
Ward’s single linkage to produce a minimum variance par-
titioning of the bands. In [2], Imani and Ghassemain used
(hard) c-means for supervised band grouping. Martinez’s
method suffers from the limitations of vanilla hierarchical
clustering, e.g., how to pick clusters from the dendogram.
Imani and Ghassemain’s approach suffers from the limita-
tions of the c-means clustering algorithm, e.g., initialization,
selection of c, and lack of ability compared to “soft” cluster-
ing (probabilistic, fuzzy or possibilistic).

Herein, we explore a new band grouping approach based
on the improved visual assessment of clustering tendency
(iVAT) [3]. This approach is well-grounded theoretically,
and it produces visual results that an expert or additional
clustering algorithm, e.g., clustering on ordered dissimilarity
data (CLODD) [4], can exploit. Our goal was to identify an
algorithm that could reproduce the structure that an expert
currently finds and also be useful in the context of classifica-
tion, which might demand different structure than an expert
“sees”. A common practice is to use a proximity metric like
correlation to measure the similarity between bands. Of-
ten, contiguous bands are highly similar and this structure
“shows up” if one produces an image of the similarity ma-
trix. The CLODD algorithm analyzes a dissimilarity matrix,
e.g., distances between vectors in a data set or bands in hy-
perspectral imaging, and it automatically finds “block-like”
structure. Structure is often found in a proximity matrix ac-
cording to squares of high-contrast along the matrix diagonal.
The CLODD algorithm exploits two properties, “edginess”
and “contrast”. CLODD obtains contiguous band groups.
However, we can automatically identify non-contiguous clus-
ters (band groups) if we re-order the bands according to a
method like iVAT. Herein, we explore both contiguous and



non-contiguous band groups and compare their relative per-
formances. On one hand, contiguous is useful if we wish to
identify a simpler sensor, however it could very likely be the
case that non-contiguous bands share similarity and should
be grouped and lead to more of a dimensionality reduction
approach. Overall, the “answer” to this question is very task
specific. While CLODD and iVAT are naturally unsupervised
techniques, we also explore a supervised CLODD and iVAT
approach based on the construction of a dissimilarity matrix
using the data labels. The following sections describe the
proposed approach and results.

2. METHODS

First, the hyperspectral data cube (image) is re-arranged to
form a 2D data set (so spatial context is lost) where each row
represents a pixel in the image and each column is a band.
Let the data set be X = {x1,x2, · · · ,xn} ∈ Rn×b, where
n is the number of pixels in the image and b is the number
of bands. The label for each pixel, xi is yi ∈ {1, 2, · · · , L},
where L is the number of classes. Figure 1 shows the major
steps in the proposed approach.

Fig. 1. Block diagram for the proposed method

2.1. Calculation of dissimilarity matrix

The computation of the dissimilarity matrix (DM) differs for
unsupervised and supervised band grouping. Note, there are
numerous proximity measures and their aggregation that can,
and have, been used for each, e.g., correlation, Bhattacharyya
distance, Kullback-Liebler divergence, etc [5].

Herein, for supervised band grouping we compute the
mean of the training samples in each class and a matrix, M ,
is formed such that ith row is the mean vector for the ith class.
The square of the Euclidean distance between two bands, i
and j is computed according to d1(i, j) = ||Mi − Mj ||2,
where Mi (and Mj) is the ith (jth respectively) mean vector.
For unsupervised band grouping, we compute the square of
the l2 norm of the differences between pixel values for those
two bands, d2(i, j) = ||X.,i−X.,j ||2, where X.,i is a column
vector of all pixel values for band i. The resultant pairwise
dissimilarity matrix is sized b× b. Figure 2 is an example for
the Indian Pines data set.

(a) (b)

(c) (c)

Fig. 2. Supervised DM for Indian Pines data set; (a) “raw”
DM, (c) VAT re-ordered, (b) iVAT enhanced minus the re-
ordering step, and (d) iVAT enhanced with re-ordering.

2.2. Reordering of DM using iVAT

Figure 2(a) shows that some non-contiguous bands are sim-
ilar. We can group those similar bands together in the ma-
trix if we re-arrange the indicies (bands) using VAT [6]. VAT
re-orders bands (data points in standard clustering) based on
Prim’s modified minimal single linkage. In [3], Havens et al.
proposed an improved VAT (iVAT) that uses the graph theo-
retic distance to transform VAT to enhance our visualization
and the effectiveness of the VAT algorithm. Figure 2(b) is the
iVAT enhancement step on (a) without re-ordering and (c) is
the enhanced iVAT on the re-ordered DM (b).

2.3. Clustering of a DM

CLODD, a “visual” clustering algorithm, which is more of an
image processing technique than standard feature space clus-
tering, exploits the “blockiness” in the raw DM or a reordered
DM. Initially, VAT was created as a tool to help a user ‘see” if
there is any potential structure in the data. CLODD goes the
next step and clusters the data. Its goal is to find a hard parti-
tioning (aka clusters) via dark blocks along the matrix diago-
nal. While searching for the partition boundaries, it considers
contrast between the on-diagonal dark block and off-diagonal
lighter blocks known as ”squareness” and visually apparent
edges between the blocks, termed as ”edginess”.

Let D be the DM, U is a c partitioning and bi is the num-
ber of (contiguous) bands in cluster i. Squareness is

Esq(U ;D) =

∑c
i=1

∑
s∈i,t/∈i dst∑c

i=1(b− bi)bi
−

∑c
i=1

∑
s,t∈i,s6=t dst∑c

i=1(b
2
i − bi)

.



Table 1. Classification accuracy (percentages) for unsupervised band grouping.
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CLODD(contiguous) Mean 71.84 55.62 89.92 95.98 98.72 68.09 81.56 52.14 98.74 79.30
CLODD(contiguous) Weight 66.43 47.98 87.41 94.97 98.72 64.86 78.98 43.18 98.65 75.95

CLODD(non-contiguous) Mean 71.05 53.37 88.16 95.81 98.47 66.41 80.34 39.51 98.84 77.55

CLODD(non-contiguous) Weight 66.78 47.98 87.66 96.31 98.72 65.50 78.93 41.96 98.74 76.12

Hierarchical Mean 66.87 49.48 87.91 93.13 97.70 67.05 78.88 31.57 98.45 75.39

Hierarchical Weight 65.30 51.42 90.68 95.14 97.95 68.60 78.52 47.66 98.55 76.78

Table 2. Classification accuracy (percentages) for supervised band grouping.
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CLODD(contiguous) Mean 71.40 55.62 89.67 95.64 98.72 70.41 82.02 52.14 98.65 79.54
CLODD(contiguous) Weight 65.30 48.73 89.67 95.48 98.72 63.57 77.86 43.38 98.65 75.59

CLODD(non-contiguous) Mean 69.40 52.32 88.92 96.15 98.47 68.99 80.04 43.79 98.65 77.71

CLODD(non-contiguous) Weight 65.74 47.23 88.92 95.81 98.47 64.60 78.42 43.58 98.84 75.79

Hierarchical Mean 67.31 49.03 88.16 92.63 97.70 64.21 78.37 31.16 98.45 74.94

Hierarchical Weight 65.48 50.67 89.92 95.14 97.95 68.73 79.28 47.45 98.55 76.90

c-means Mean 66.78 53.97 86.15 93.13 97.19 67.96 77.66 33.20 97.78 75.45

c-means Weight 63.73 49.63 83.88 93.13 97.19 68.60 77.10 44.81 95.65 74.86

The first part is the average between dark and non-dark re-
gions. The second is just for dark regions. Edginess is

Eedge(U ;D) =
1

c− 1

c−1∑
j=1

∑mj

i=mj−1 |di,mj − di,mj+1|
bj + bj+1

+

∑mj+1

i=mj+1 |di,mj − di,mj+1|
bj + bj+1

)
,

where mj =
∑j
k=1 bk and m0 = 1.

The objective function has two controlling parameters:
mixing coefficient, α to trade-off between squareness and
edginess; and γ to impose minimum cluster size,

E(U,D) = s( min
1≤i≤c

bi, γb)(αEsq(U,D)

+ (1− α)Eedge(U,D)),

where s(.) is a spline function and is maximized with respect
to U to obtain the optimum partition, U∗.

2.4. Feature extraction

Herein, we explore two feature extraction methods, mean and
weight. In the ’mean’ method, the resultant feature in each
band group is the mean value of all bands in that group. In
’weight’, the weight of each band is determined as Wi =
1
R

∑
j∈Ci,j 6=i

1
ε+d(i,j)2 . The band with the highest weight,

i.e., minimum average distance from all other bands in that
group, is selected as the representative [1]. While we could
have performed more advanced feature-level fusion or dimen-
sionality reduction methods, the (simple) mean and weight
were used as they are more easily translated into a physical
sensor when designing a multispectral sensor.

2.5. Classification

Herein, we use a soft margin support vector machine (SVM)
with RBF kernel for classification [7]. While we could have
used a more sophisticated classifier, e.g., multiple kernel



learning [8], we desired to reduce the number of “free pa-
rameters” to study just the proposed band grouping technique
relative to related work.

3. PRELIMINARY FINDINGS

The publicly available benchmark data set Indian Pines is
used to validate our method. The image has 145 × 145 pix-
els with a spatial resolution of 20 meters and 220 spectral
channels (bands). We removed 20 water absorption bands,
104−108, 150−163 and 220; we consider only those classes
with more than 5% of the total samples— Corn-notill, Corn-
mint, Grass-pasture, Grass-trees, Hay-windowed, Soybean-
notill, Soybean-mintill, Soybean-clean and woods.

We used a random jack-knife partitioning of the data,
where 20% are for training and the remainder is testing. We
modified CLODD and instead of letting it pick c we varied
c ∈ {3, 4, ..., 35} and α. We keep γ fixed to minimum cluster
size of 2. Whereas CLODD will pick the “best visual clus-
tering”, we wanted to generate multiple candidate partitions
and pick the “winner” based on classification accuracy. Next,
the training data is standardized for each feature to have zero
mean and unit variance. The testing data is standardized with
the mean and standard deviation of the training data. We
varied the RBF and adopted a one-vs-all strategy for multi-
class classification. The best classification accuracy for each
scenario is reported and used for comparison.

Table 1 is the classification accuracy for unsupervised
band grouping. Non-contiguous CLODD-mean has the best
overall performance. For soybean clean, it shows great im-
provement of approximately 5% over the Hierarchical based
method. Note that wood has almost the same accuracy for
different methods because its characteristics are distinctly
different from all other classes which makes it easily classi-
fiable by any of the methods. On the other hand, corn(min)
and corn(notill) have very similar characteristics and are
difficult to differentiate. For these two classes, contiguous
CLODD-mean is the best.

Supervised band grouping is reported in Table 2. Con-
tiguous CLODD-mean is still the top performer and it has a
slightly better overall accuracy than unsupervised. For this
data set, we see that unsupervised or supervised (how to con-
struct the DM) does not make a significant difference in per-
formance. Another point is performance appears to greatly
depends on the band group feature extraction method. For
example, CLODD and c-means favor the mean whereas Hier-
archical likes weight.

4. CONCLUSION AND FUTURE WORK

Herein, we explored a visual clustering algorithm, CLODD,
and re-ordering technique, iVAT, for contiguous and non-
contiguous band group selection in hyperspectral imaging.
Previously, these clustering techniques were used for feature

space clustering instead of band group selection. Experi-
mental results indicate that contiguous CLODD is the top
performer. However, in future work we will explore the pro-
posed algorithms on additional data sets, compare to more
band selection and band group selection algorithms, explore
additional DM functions for supervised and unsupervised,
feature extraction methods, fusion strategies and more so-
phisticated classifiers.

5. REFERENCES
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