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Training Data

Let a training data set, T , be

T = {(Oj , αj)|j = 1, ...,m}

where O = {O1, ...,Oj , ...,Om} is a set of “objects” and αj are
their corresponding labels (specifically, <-valued numbers). For
example, Oj could be the strengths in some hypothesis from N
different experts, signal inputs at time j , algorithm outputs for
input j , kernel inputs or kernel classifier outputs for feature vector
j , etc. Subsequently, αj could be the corresponding function
output, class label, membership degree, etc.

Fuzzy Set Theory in Computer Vision: Example 5



ChI Learning

Quadratic Programming-Based Optimization

ChI with respect to T

Let hj be the jth integrand, i.e., hj(xi ) is the input for the ith
source with respect to object j . The discrete ChI, for finite X and
object Oj is

∫
hj ◦ µ = Cµ(hj) =

N∑
i=1

[hj(xπj (i))− hj(xπj (i+1))]µ(Aπj (i)),

for Aπj (i) = {xπj (1), ..., xπj (i)} and permutation πj such that
hj(xπj (1)) ≥ ... ≥ hj(xπj (N)), where hj(xπj (N+1)) = 0.
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Sum of Squared Error of ChI and T

Let the SSE between T and the CI be

E1 =
m∑
j=1

(Cµ(hj))− αj)
2.

E1 =
m∑
j=1

(At
Oj
u− αj)

2,

where u is the lexicographically encoded capacity vector and

At
Oj

=
(
..., hj(xπj (1))− hj(xπj (2)), ..., 0, ..., hj(xπj (N))

)t
is of size 1× (2N − 1). The function differences correspond to their
respective µ locations in u.
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Sum of Squared Error of ChI and T

Folding our equation out further, we find

E1 =
m∑
j=1

(utAOj
At

Oj
u− 2αjA

t
Oj
u + α2

j )

= utDu + ftu +
m∑
j=1

α2
j ,

where

D =
m∑
j=1

AOj
At

Oj
and f =

m∑
j=1

(−2αjAOj
).
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Constraints
In total, the capacity has (N(2N−1 − 1)) monotonicity constraints.
These constraints can be represented in a compact linear algebra
(aka matrix) form. The following is the minimum number of
constraints needed to represent the FM. Let Cu + b ≤ 0, where

Ct =
(

Ψt
1,Ψ

t
2, ...,Ψ

t
N+1, ...,Ψ

t
N(2N−1−1)

)t
,

and Ψ1 is a vector representation of constraint 1, µ1 − µ12 ≤ 0.
Specifically, Ψt

1u recovers u1 − uN+1. Thus, C is simply a matrix
of {0, 1,−1} values (next slide)
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Constraints

C =


1 0 ... −1 0 ... ... 0
1 0 ... 0 −1 ... ... 0
...

...
...

...
...

...
...

...
0 0 ... 0 0 ... 1 −1

, (1)

which is of size (N(2N−1 − 1))× (2N − 1).
Also, b = 0, a vector of all zeroes. Note, in some works, u is of
size (2N − 2), as µ(φ) = 0 and µ(X ) = 1 are explicitly encoded. In
such a case, b is a vector of 0s and the last N entries are of value
-1. Herein, we use the (2N − 1) format.
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Quadratic Program

Given T , the search for FM µ reduces to a QP of the form

min
u

1

2
utD̂u + ftu, (2)

subject to Cu + b ≥ 0 and (0, 1)t ≤ u ≤ 1. The difference
between the two equations is D̂ = 2D and the inequality need only
be multiplied by −1.
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`1-Norm of a Lexicographically Encoded FM

Let u ∈ R2N−1 be u = (µ1, µ2, ..., µ12, µ13..., µ12...N)t . Note that
we define this ordering such that it is also sorted by cardinality. A
relatively simple index of the complexity of µ is

v`1(µ) =
2N−1∑
j=1

|uj | =
2N−1∑
j=1

uj .

As an example, consider the case of N = 3 where the vector u is
u = (µ1, µ2, µ3, µ12, µ13, µ23, µ123)t .
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Regularization

In general, the challenge of QP-based learning of the ChI relative
to a regularization term is the optimization of

E2 =
m∑
j=1

(utAOj
At

Oj
u− 2αjA

t
Oj
u + α2

j ) + λv∗(µ), (3)

where v∗(µ) is the regularizer term. In order for our equation to be
suitable for the QP, v∗ must be linear or quadratic. See our paper
“A. Pinar, D. T. Anderson, T. Havens, A. Zare, T. Adeyeba,
Measure of the Shapley Index for Learning Lower Complexity Fuzzy
Integrals, Granular Computing, 2017” for different fuzzy measure
information theoretic regularizers.
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