Fuzzy Set Theory in Computer Vision: **Example 12**

Derek T. Anderson and James M. Keller

FUZZ-IEEE, July 2017

 \blacktriangleright Already discussed how to learn μ from data

- lacktriangle Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i)$, $\forall i \in \{1,...,N\}$

- lacktriangle Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i)$, $\forall i \in \{1,...,N\}$
- These are called the densities

- lacktriangle Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i)$, $\forall i \in \{1,...,N\}$
- These are called the densities
- They are the utility of the individuals

- lacktriangle Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i)$, $\forall i \in \{1,...,N\}$
- These are called the densities
- They are the utility of the individuals
- Maybe they were given to us

- ▶ Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i), \forall i \in \{1, ..., N\}$
- These are called the densities
- They are the utility of the individuals
- Maybe they were given to us
- Maybe we are trying to learn them from data

- lacktriangle Already discussed how to learn μ from data
- ▶ Sometimes, all we know is $\mu(x_i)$, $\forall i \in \{1,...,N\}$
- These are called the densities
- They are the utility of the individuals
- Maybe they were given to us
- Maybe we are trying to learn them from data
- ▶ The focus of these slides are how to "fill in" (aka impute) the remaining terms, i.e., $\mu(A)$, $\forall A \in 2^X \setminus \{x_1, ..., x_N\}$

Sugeno λ FM

▶ For sets $A, B \subseteq X$, such that $A \cap B = \emptyset$,

$$\mu_{\lambda}(A \cup B) = \mu_{\lambda}(A) + \mu_{\lambda}(B) + \lambda \mu_{\lambda}(A)\mu_{\lambda}(B),$$

for some $\lambda > -1$.

Sugeno λ FM

▶ For sets $A, B \subseteq X$, such that $A \cap B = \emptyset$,

$$\mu_{\lambda}(A \cup B) = \mu_{\lambda}(A) + \mu_{\lambda}(B) + \lambda \mu_{\lambda}(A)\mu_{\lambda}(B),$$

for some $\lambda > -1$.

Sugeno showed,

$$\lambda + 1 = \prod_{i=1}^{N} (1 + \lambda \mu^{i}),$$

there exists exactly one real solution such that $\lambda > -1$, where $\mu^i = \mu(x_i)$.

Interesting observations

▶ If $\sum_{i=1}^{N} \mu^i = 1$, then $\lambda = 0$ (probability measure)

Interesting observations

- ▶ If $\sum_{i=1}^{N} \mu^i = 1$, then $\lambda = 0$ (probability measure)
- ▶ If $\sum_{i=1}^{N} \mu^i > 1$, then $\lambda < 0$ (Dempster-Shafer belief function)

Interesting observations

- ▶ If $\sum_{i=1}^{N} \mu^i = 1$, then $\lambda = 0$ (probability measure)
- ▶ If $\sum_{i=1}^{N} \mu^i > 1$, then $\lambda < 0$ (Dempster-Shafer belief function)
- ▶ If $\sum_{i=1}^{N} \mu^i < 1$, then $\lambda > 0$ (Dempster-Shafer plausibility function)

▶ Let *S* be a t-conorm

- ▶ Let S be a t-conorm
- Calculate

$$\mu(A \cup B) = S(\mu(A), \mu(B)).$$

- ▶ Let S be a t-conorm
- Calculate

$$\mu(A \cup B) = S(\mu(A), \mu(B)).$$

► Famous example is the *W**-decomposable measure, where *W** is the Lukasiewicz t-norm

- ▶ Let S be a t-conorm
- Calculate

$$\mu(A \cup B) = S(\mu(A), \mu(B)).$$

- ► Famous example is the W*-decomposable measure, where W* is the Lukasiewicz t-norm
- ► For example, let S be the maximum operator

$$\mu(A \cup B) = max(\mu(A), \mu(B)).$$

Thus, if we only have the densities then the utility of any subset is defined to be the "strongest" (highest utility) individual in that subset.