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Imputation

Overview

I Already discussed how to learn µ from data

I Sometimes, all we know is µ(xi ),∀i ∈ {1, ...,N}
I These are called the densities

I They are the utility of the individuals

I Maybe they were given to us

I Maybe we are trying to learn them from data

I The focus of these slides are how to “fill in” (aka impute) the
remaining terms, i.e., µ(A), ∀A ∈ 2X \ {x1, ..., xN}
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Imputation

Sugeno λ FM

I For sets A,B ⊆ X , such that A ∩ B = ∅,

µλ(A ∪ B) = µλ(A) + µλ(B) + λµλ(A)µλ(B),

for some λ > −1.

I Sugeno showed,

λ+ 1 =
N∏
i=1

(
1 + λµi

)
,

there exists exactly one real solution such that λ > −1, where
µi = µ(xi ).
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Imputation

Interesting observations

I If
∑N

i=1 µ
i = 1, then λ = 0 (probability measure)

I If
∑N

i=1 µ
i > 1, then λ < 0 (Dempster-Shafer belief function)

I If
∑N

i=1 µ
i < 1, then λ > 0 (Dempster-Shafer plausibility

function)
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Imputation

S-decomposable measure

I Let S be a t-conorm

I Calculate
µ(A ∪ B) = S (µ(A), µ(B)) .

I Famous example is the W ∗-decomposable measure, where
W ∗ is the Lukasiewicz t-norm

I For example, let S be the maximum operator

µ(A ∪ B) = max(µ(A), µ(B)).

Thus, if we only have the densities then the utility of any
subset is defined to be the “strongest” (highest utility)
individual in that subset.
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