Fuzzy Set Theory in Computer Vision: Example 7

Derek T. Anderson and James M. Keller

FUZZ-IEEE, July 2017
Overview

▶ In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
Overview

- In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
- We focus on DIDO-level fusion
Overview

- In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs.
- We focus on DIDO-level fusion.
- The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI.
Fusion of deep learners

Overview

▶ In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
▶ We focus on DIDO-level fusion
▶ The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI
▶ This is NOT the only way to fuse information in a DL
Overview

▶ In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
▶ We focus on DIDO-level fusion
▶ The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI
▶ This is NOT the only way to fuse information in a DL
▶ More-or-less an ensemble of DLs
Overview

- In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
- We focus on DIDO-level fusion
- The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI
- This is NOT the only way to fuse information in a DL
- More-or-less an ensemble of DLs
- Many ways you can do this
Overview

- In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs.
- We focus on DIDO-level fusion.
- The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI.
- This is NOT the only way to fuse information in a DL.
- More-or-less an ensemble of DLs.
- Many ways you can do this:
 - Variations on one DL architecture, e.g., GoogleNet.
Overview

- In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
- We focus on DIDO-level fusion
- The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI
- This is NOT the only way to fuse information in a DL
- More-or-less an ensemble of DLs
- Many ways you can do this
 - Variations on one DL architecture, e.g., GoogleNet
 - Different DL architectures, e.g., GoogleNet with AlexNet with VggNet ...
Overview

▶ In this presentation, we quickly discuss how to fuse a set of deep learners, e.g., CNNs
▶ We focus on DIDO-level fusion
▶ The purpose is to discuss a few details related to “setting up” the DLs so they can be fused with the FI
▶ This is NOT the only way to fuse information in a DL
▶ More-or-less an ensemble of DLs
▶ Many ways you can do this
 ▶ Variations on one DL architecture, e.g., GoogleNet
 ▶ Different DL architectures, e.g., GoogleNet with AlexNet with VggNet ...
 ▶ Combination thereof
DIDO fusion of deep learners
Fusion of deep learners

DIDO fusion of deep learners

![Diagram of DIDO fusion of deep learners]

Fuzzy Set Theory in Computer Vision: Example 7
DIDO fusion of deep learners

Fuzzy Set Theory in Computer Vision: Example 7
Correspondence

- Training your own deep learners
Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
- Using pre-trained deep learners
Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
- Using pre-trained deep learners
 - What MANY people do

Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
- Using pre-trained deep learners
 - What MANY people do
 - Networks are often trained on different input image sizes
Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
- Using pre-trained deep learners
 - What MANY people do
 - Networks are often trained on different input image sizes
 - Number of output neurons and labels often vary
Correspondence

- Training your own deep learners
 - Easy, you can ensure the 1-to-1 (label) mapping
- Using pre-trained deep learners
 - What MANY people do
 - Networks are often trained on different input image sizes
 - Number of output neurons and labels often vary
 - Point being, you often have to do (manual or use an ontology) some house cleaning; 1-to-1, many-to-1, 1-to-many mappings
DIDO fusion of deep learners

Fuzzy Set Theory in Computer Vision: Example 7
Scaling

What values are your neurons producing?
Scaling

- What values are your neurons producing?
- Soft max normalization
Scaling

- What values are your neurons producing?
- Soft max normalization
- Softmax function or normalized exponential function is a generalization of the logistic function that “squashes” a K-dimensional vector z of arbitrary real values to a K-dimensional vector $v(z)$ of real values such that

$$v_k(z) = \frac{e^{z_k}}{\sum_{k=1}^{K} e^{z_k}},$$

thus

$$\sum_{k=1}^{K} v_k(z) = 1.$$
Scaling

- What values are your neurons producing?
- Soft max normalization
- Softmax function or normalized exponential function is a generalization of the logistic function that "squashes" a K dimensional vector z of arbitrary real values to a K dimensional vector $v(z)$ of real values such that

$$v(z)_k = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}},$$

thus

$$\sum_{k=1}^{K} v(z)_k = 1.$$
DIDO fusion of deep learners
DIDO fusion

- Refer to our earlier slides
 - Imputation from densities, e.g., Sugeno λ-FM, where the densities are given by the accuracy of each deep learner
 - Learn the full μ, using something like the QP extended to vectors versus scalars by using a p-norm of the classification vector relative to a ground truth vector

Existing article that uses FI for DL fusion

Scott, Grant, Marcum, Richard, Davis, Curt, Nivin, Tyler, Fusion of Deep Convolutional Neural Networks for Land Cover Classification of High-Resolution Imagery, 2017
DIDO fusion

- Refer to our earlier slides
 - Imputation from densities, e.g., Sugeno λ-FM, where the densities are given by the accuracy of each deep learner
 - Learn the full μ, using something like the QP extended to vectors versus scalars by using a p-norm of the classification vector relative to a ground truth vector
- Existing article that uses FI for DL fusion
 - Scott, Grant, Marcum, Richard, Davis, Curt, Nivin, Tyler, Fusion of Deep Convolutional Neural Networks for Land Cover Classification of High-Resolution Imagery, 2017